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Effect )y Oscillati T ion wouple

" on the Contuct Surfaces of Elagtic Sphereg

Introduction

The problem of two elastic bodies in Hertz contact subjected to a
monotonically increasing torsional couple applied about the axis of sym-
metry of the system was first considered by Mindlin(l) who found that,
in the absence of slip on the interface, the tangential traction rises to
infinity on the elliptic boundary of contact. The torsional contact of
(2)

two like spheres was reexamined by Lubkin who made allowance for the
occurrence of slip.

The present paper extends the Lubkin solution to the case in which
the normal force is held constant while the torsional couple, after having
reached a certain value, decreases, and to the case in which the torsional
couple oscillates between fixed amplitudes. In the latter, the curve re-
lating twisting moment to angle of twist forms a closed loop, the area of
vhich represents the frictional energy dissipation per cycle, For small
amplitudes, this energy loss is found to vary as the cube of the twisting
moment, The solution' is, strictly speaking, valid only for small amplitudes
of the apnlied moment, because of an approximation made at the start. Prac-

tically, however, it is good over a large portion of the permissible range

of moment-normal force ratios.

(1) R. D. Mindlin, "Compliance of Elastic Bodies in Contact,” J. Appl.
Mecho, VO].. 16’ 1949, ppo 259-268'

(2) J. L. lubkin, "The Torsion of Elastic Spheres in Contact," J. Appl.

L m——



An approximate expressi..i 1s obtained for the torsional compliance
which depends upon the past history of loading. The initial value of the

compliance during the first loading process is found to be the same as

given in reference (1),

Summary of Previous Work

The Hertz problem for two like spheres (3) predicts a plane, circular

contact surface of radius

-~

1/3 .
a=(G?NR) (1)

where N is the normal force, R the radius of the spheres, and Q = 3(”7’,')/451
in which ¥ and £ are Poisson's ratio and Young's modulus, respectively, cf
the material,

The distributi,c;n of normal traction on the contact surface is given by

/2.

ag = SN (az'—/o") (2)

2mra’
where /o is the radial digstance from the center of the contact surface,

Ify now, an additional moment (M ) is applied about the axis of
normal contact, and if it is assumed that no slip cccurs, symmetry considera-
tions lead to the conclusion that no normal component of tractlon is induced
and that the entire contact surface rotates as a rigid body with respect to
a distant point of one of the spheres. The situation is thus reduced to a
mixed boundary value problem in elagticity. With a system of cylindrical

coordinstes whose origin is at the center of the circle of contact and the

(3) S. Timoshenko and J. N. Goodier, Theory of Elasticity, (McGraw-Hill
Book Company, New York, 1951), p. 372.

2
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2 ~axis along “he axis of symmetry of the two spheres, the boundary condi-
tions are: on the contact surface, the normal component of traction

a, (zero) and the tangential component of displacement.oﬁ,(proportional to
the distance from the origin) are given. On tge remainder of the surface
of the sphere, approximated as plane, the three components of traction

z;r’

1
To + 9% (all zero) are given., Solution of this problem( ) gives

the shearing stress Tzo On the contact surface,

= 'z;g/ - =20 /o.(a‘—,«‘)-l/’L (3)

4mra3

and the torsional compliance of a single body

di . 2
G = am - /Mi‘4¢z3 (%)

where ,5 is the angle of rotation of the contact surface with respect to a
distent point in the body Z 20 4 and U 1s the shear modulus of the
material.

Since 7° beccm/es infinite on the boundary of the contact circle, slip
must result from sn applied twisting moment, no matter how small, It may be
expected to stert at the edge of the contact surface where the singularity
occurs, and, because of the radial symmetry of ¢° 4 to progress radially
inward on an annulus. Further, it is assumed that, on the annulus of slip,
7= f o~ 4 where f is a constant coefficient of friction, and that it
does not exceed this value elsewhere, On account of symmetry, the rigid
rotation remains unaffected for the region over which no slip has occurred
(the "adhered" portion). This gives rise to another mixed boundary value
problem in elasticity. The normal component of traction o (zero) and the

tangential component of displacement ¢ (proportional to the distance from

3=

s e o . e e e e it 1 g gt
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the origin) are given on the adhered portion and the traction igs given cver

the remainder of the boundary ( z--.\fa-’ Typ =% =0 or the annulus

of 8lip and all compcnents of “raction zero outside)., Solution of this

f (2)

| problen 7ields the shear stress
3 < a,\'/"
| e R aeees
|
Fé o 3'“/\' / - z[ D ( ) (5)
? v M am e 14 EfeDFR e
. am‘( £ 7 . T
ﬁ L -KIREK @) pee
" . 7 - 7 /
where ¢ i,?,f@e inner radius of the annulusy k'z= ¢/a, K = (1- K")’j
Fx) p) and E(@,’gﬁ) are inpamplete elliptic integrals of the first ard

sedondkind, reapsctively, of modulus K/ amd amplitude

2 : - L / f 4 -::d"
; T QAL A = [ -
: L 1~ par

(4)

E and D(K) is a tatulated somplete elliptie integral, of medulus K,

D= (K-E)/ e~ (6}

Hers, /K and /& are, respectively, the complets elliptic intsgrals of

the first and secend kind, of modulus K+ A oross=section of the distribu-

tion of 7= is illustrated by curve a AQ (n Figure 1,

The relstion between the applied moment and the inner radius of slic

ls given by the condition of equilibrium

T ML TR WANAITS v R B

a
M= 2m | zTpetd
af/"/o (7)

(4) E, Jehnke and F. EImde, Tables of Functions, (Dover Publicsticns,
New York, 1945)y pp. 73 and &3,
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Hence,

Na‘ ) * ’ * - , Ly
INa {320 e [OK o (467- 3)D] - SRR

/e ‘
+ 3(1.[‘( j e (K aim o) dox (8)

& () teata )R
/L
- ;Dj oy (K- i) d -/}
(i . o()l/l

‘Purther, the relation between the angle of twist ard the inner redius of
- 8lp is

” 3 |
A h—L—/G,n B 3

Equations (&) and (9) express, implicitly, the relation betvesn the applied

twist¢ing momen* and the resulting angle of twist, -This is represented

graphically by curve OPF in Pigure 2, The value of the moment st which
8lip oscurs over the entire contact surface, 1,8,, 8liding is initiated, is
M/fNa .e 311-//6 . This corresponds to an infinite value of the angle

of twist,

Aporarisate Pormulas for M /fNa &/

In what follows it will be necessary to have exrlieit and reversible
relations between mach pair of the thres gquantities: inner radius of the

8lip annulus, twisting moment und angle of twist, This ig manifestly



impossible for the exact solution [Eqs. (@) and (9)]. Let us, therefore,

confine our efforta to the range of small M/,’Na y 1e8ey K = c/a. >/,

Becauss of the divergence of the two irtegrels irn Eq. (8) for K'=1{,

all efforts to express M of Eq. (8) as a polynomial in K have besn une

MR R P AR W DT T T T L D
T e e

§ A i oAt e e

successful, For this reasen the equation for M haa been obtained in a

(5
different form, Starting with the follewing expression for ¥ >,

zm’ o (- et) cepea

/e (1¢)

8 i . atkt el [ (at- p2) e
“ | T-= et (C f) f['/ ak.Mat/(a /,;)](, /c,dmat)ﬁ

pec
."Lnéerting it into the comdition of équilibriﬁm, Bq. (7)y reversing the order
-of -intsgration, and noting @;at‘é?
L L
| = KY il
1/!. 1 8 iz
- 2K -1 ol
. - + n—
[ = Ko Adan o Ax = -137:;7‘ E Y
h ,
we find
-ﬂ— = é_K’KThE
a
N /s (1)

L -/ _’_‘,
+$&3f,4a"a crx \ 1 Kala Tom (t’ cron | dox

(5) 1In reference (2), ineert Eq. (47) into Eq. (36), The a’ is hnere
repleced Ty ¢C.

! (¢) 1, Fotin, Formules et Tables Numériquee, (Cauthier-Villars, Faris,
1925), FP. 71.217130
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Tie excression is easily expanded in a cower gseriss in & with the

result
fNazm("&K' ¢t ) (12)

Table I. comperes the values of M/_fNa ,caleulated by retaining two and
<hree terms ir the axpansion,Zq, (l2),with <he exact values tatulazed in

roference (2),

Table I,
o - _MENR
Kecfa | kal=-wt /fna
e - Exagt | -verm Error 2=%erm | g zrper
ADPPTOX, ADPTEX
1 0 0 o o) 0 8]
0.55 0.0975 0.,0538 | 0.,09332 0.1 2.09393 0.1
0.9 0,19 - 0.1764 | 0.,17636 0 0.17646 N
0,85 0.2778 Co2482 | 0.24829 0 0.24862 0.2
0.8 0.36 20,1108 | C.31047 0,1 . 31140 0.3
0.7 O|5l 004082 0441033 0;5 0141246 1.0
0.6 064 0.4805 | 0,483 BIYA 0.48640 1.2
0.5 D.75 0.5286 | 0.,531247 27 0.53%06 2,0
YA 0.84 0.,5592 | 0,56613 1.2 C.87840 2.5
043 0,91 0,5765 | 0.5876% 1.9 0.59946 3.9
0.2 0.96 n,5855 | 0,60058 2,6 0.61440 403
0 1l 0,580 | 2,60037 ERYA 0,62500 6,1
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A similar expansion of B in Eq. (3) yields

2
M8 3 x> DR IS .
N g/z."(’ 8 et <" ) (13)

but 1ts use must be confined to small K, since the expression in Zq. (9)

diverges for K =/ . Exact and approxirate values of’/ya?%<;vv are

compared in Table II,

Table II,
- L
uasB /N
K'=cfa ke ikt | ) Alf
: - ' e o | 3etem , determ |, -
S S - Exazt Approx, % EZrror AppTOX. { Error
y ; RN > | o | o
0495 0,875 0,01%80 | 0,018 0 - 0.,018%95 Q43
049 0,19 0,0385 | 0.,03847 0.1 0.03817 1,0
0.85 De778 0,0586 | 0,08%38 O 008744 2.0
C.8 0.36 0.0794 | 0.07866 0.5 0,07661 3.5
0.7 0.51 0.1234 | 0,11%758 249 0.11332 7.7

In view of the preat complications ariaing from emrloying three or

more terms in the expansions, Eqs, (12) and (13), we confine ourselves to

two=term approximations, A short computation yields the Tollowing relati
M _z/, - | + 3c/at)?
fNa ~ 3 ) (14)
[ - __/_ 4 { - .‘_3. .ﬁ-)l/l /
" V3 2 fNa | = (15)

ons ¢
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N (16)
/ 12 tfa
pas _ L -2 [, -2m
N 8[/ (/ sz“) [‘3 (, ?—fNa)
()

Equation (17), which represents the explicit moment=-twist relation,

lead dirsetly to the torsiomal ccmpliance

¢ 21, (1- _3..,/21)"/‘ ,]

(2 /‘/UGJL 2 fNa (18)
It is seen thet its initial valus is the same aeg in Eqe (4 ).

Deorsnsing Torstonal Memant (7
. Suppose, nowy that, after having reached a wvalue M*, suah that

0 &« M/§Na & ZM/i6 the twisting moment M 1is reduced, If slip
were preverted, the tangentiasl component of tractionm 70 would tend to
negntive infinity on the boundary {«o = .+ This conclusion is reached from
the solution of the apprropriate boundary value problem :in elasticity, as
described in the ssction entitled "Qpmary of Praviocue wWork'. Henca, slip,
opposite in sepse to the initial slipy is presumed to start at f =d, and
penetrate to a radius b , assumed, temporarily, to be of magnitude c4 béa.

On the anrulus ﬁl.-(Of.-a., = -.j’a- sy 80 that the change of tangential

(7) The procedure in this and the following sections was first employed

in connection with tenpentisl contact of two spheres, See
Re 2. ¥indlin, w. F, Yason, T, ¥, Osmer and H. Zeresiewicz, "Effects of an

Oscillating Tengential Torce on the Contact Surfeaces of Elastic Spheras,”
Proe., lst U, 3, Nat'l., Cong. Appl. Mech, (1951), pp. 203=208,

9=
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traction is -Zfd‘. Sinece ne aiditional slip occurs on the surface 'o e b,
tre chance of clisplacement in that region must be that of g rigld body rota-
tion, Trus, the charge due to reduction of M presents a boundary value
problem in elasticity identical in forr with that soclved in reference (2),
Hence, ty analogy with Zg. (5), the change in tracticn is
3fN 1 e

s - a“~ ¢* cpta

e ' (19)
o M Yl 2D F (K )

mad '

. Kk )E, 8)] | gk

%

where &) , N.,' ard ¢, grer obtained frox K4 K’ and ¢ s respectively, by
replacing C’bﬁ' . Mis distritution is illustrated by curve aA 0 i
Flgure 2,

Te resultant traction sceempanying a reduction im M is obtained by

adding the initial traction, Eq. (5), and the charge, g, (19), with the

result
3N 7
(7 =-z~’;‘£a-,-(a"~(°=) ) bepta

’_I/t ;4-_
e B (e (1 EA), cepet

I tfx 2
r -_--ii—(a"—(") [/*;(ZM,'A:)J ¢c
Q iva’ » f
ra
where Ab gtands for the bracketed expression in Zg. (19) and Ac for a
similar expression in Eq. (5). The traction profile is illustrated by curve
aDEO in Figure 1,
The condition of equilibrium, Zq, 7), yielde, upcn manirulation des=

cribed in the section ertitled "Approximate Formulas’,

=]ll-
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me 20 [ (L2t }Ct/a‘}z]
= < ”
4fNa [I _ ( /+:’;5"/a")z] (21)

3

Noting, froz Eq. (14)y thet the first term on the right-hand side of :q. (21)

{8 the initisl torsionsl mement M¥, the tnner radiue of the anmulus of

2 . 4 /aéﬁj"”\‘/z !
V3 (" 2 zgNa / T (22)

Thus, as leng a8 -MPe M4 m* y the assumption ¢ ¢ b&a s valid,

counter-slip is

wher M= M’, L.0,y when the twisting moment is fully reversed, 4 =¢,
l1.evy counter=slip has penetrated to the depth of initial slip, At the zame
time, Egs, (29) reduce to Eqa., (5) with signs reversed, The tracticn is then
dletrivtuted just as the initial traction at M = M. wagy but with opposite
genge, The situation is the same as if n¢ positive M had ever been aprlied,
out only a negative M of magnitude M*,

The associated rotation of the achered portion is found by a similar
proceas of superpoeition, First, the change in angle of twist is obtained %y
multiplying Zg., (16) oy =2 and replacing ¢ by & =as given in Eq. (22), The
initlel twist is glven by Eq. (14) in which the value of ¢ 418 found from
I, [15) wherein M is replaced by M® , The resultant angle of *wist,

giver oy the sum of the two, Lls ziven by

/xa‘,ﬁd 3 L AL
A (R 5) - (- A) (- 35)
" A (27)
- ’_é -M { (l"'é-ﬂ)J ;3._!_\.4/
“|'72 %fna z[’* akihe - /o fNa
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The relstizn betwcen twisting-morent and angle of twist Ls Lllustrated ty the
£211 lines OQPRS in Figure 2,

The compliance for unlosding s
L3 2( 3 M-my |
T leu ad 2 2fNa - | (24)

\ & - “ \

Thus, the initial compliasnce on unlesding [ M = M~ in B3, (24)] is the
szme as the initlal compliance on loading T M =0  in 3, (18)), That is,
in Figure 2, tre alope of PR at P i3 the eame as the slope of OP at O,

© . . e

wnen M has been reduced from M to zaro, there {s a permsnent set
sivar ty OR in Mgure 4, the ragnitude of which L5 obtaired &ty setting M=0
in Bg. (23). The acoompanying traction is not zaro, bu® is a self-equilivrating

distribution obrained by setting

A‘__%}ﬂ(/_ :'-’-‘}%—')'/z-/

>

wnen M has besn reduced to -M., the twlst has reached the negatilve
of the twist at M:M‘(i.e., the abscissa of 5 in Figure 2 is the negative
of the adscissa of P ) and the compliance is identical with tha* of curve OP
at MzM* . Henee, the unloaiding curve PRS (s tangent, at § 4 to the

central perversiony 08 , of the loadirg curve OP.

p
In the preceding section, the entire situstion at M =-M is ider<izsal
] , ,
with thaz at M=z M7, except for reversal of sign, Hence, = subseguent in-

L sa < ) . \
crease of M from =M to M will be accozpanied ty the seme everts es

12~



Lud RN S an(
|

fu N 2 3 AN

L T e R ST

AL I N AR P CIGY T I CFL Paeriin, W Y

occurred during the decrease from M‘ to —M‘ y except for reversal of
sign. Thus, irn starting along SU , Tigure 3, the compliance at § 1is the
same as the cozpliance of PR at P, Slir again starts at p =@ in the
same senss as occurred along path OP . it an intermediate point of SU <the
traction will be likxe aDEQ , Figure 1, with sign rsversed, when the twist-
ing moment once more reaches MY, b il again hgva penstrated to € and the
traction will oe exaatly aAOr, Mgare 1,

The twist along path SUP i

so that S
a's . 5 M /o o ) -
’f—-ﬁ“ - ('/*1- Em&m/ P . .
N 1}

Henoe, when Ms- m* | she terminal points P of SUP and P of OF (Figure 3}
are iientical, ad may be seen by comparing Za. (25) with Zg. (17) for that value
of M. |
Subsequent diminution of M will then croduce a repetition of the
events accompanying the first diminution,
it is now evident that, during cseillatisn of M betwsen :*.M‘ y with
N nmaintained constant, the torque-iwist curve traverses the loop PRSUP,

Figure 3.

The area enclcsed in the lnop rives the frictional energy loss per

cvele: ~m°
F =_¢; («ad "/5" )dM
2,2 ) « 3/2
= Z/MN {:[/-(/-f--’%) ] (26)
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For M’/_f Na << | , 2q, (26) reduces to

m

18ud'fN

(27)

i.2,y the energy loss per c¢ycle varies as the cube of the maxi-um torsiorel

"~ moment, It is interssting to nots the close corresvondence betwsen 2sclilliating

torgisnal cor‘act and ocscillating tangential contact of two spheres, In the
latter case, for amplitudes of tangential Torce small in comparison with fN,

the energy less per cycle is equal to(7>

£ 2T
36 uafN

whare T® 15 the maximum tangential forcs,



Fig. 1.
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